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CHAPTER 4

PROJECTION BLOCKS IN
HOMOGENEOUS COUPLED

CELL NETWORKS

4.1 Abstract

We introduce a special subset of the graph of a homogeneous coupled cell
network, called a projection block, and show that the network obtained from
identifying this block to a single point can be used to understand the generic
bifurcations of the original network. This technique is then used to describe
the bifurcations in a generalized feed-forward network, in which the loop can
contain more than one cell.



4.2. INTRODUCTION

4.2 Introduction

In this paper we consider homogeneous coupled cell network vector fields.
These are vector fields of the general form

9x1 =f(xσ1(1), . . . xσn(1), λ)

9x2 =f(xσ1(2), . . . xσn(2), λ)

...
9xN =f(xσ1(N), . . . xσn(N), λ) ,

(4.2.1)

where the variables xi are elements of the same vector space V , the σi are
functions from the set {1, . . . N} to itself, and f is a smooth map from an
open set V n ×Ω ⊂ V n ×Rp to V . We are interested in generic bifurcations
of such vector fields, which means we vary the bifurcation parameter λ ∈
Ω ⊂ Rp, and ask about qualitative changes in for example the number of
steady state points or periodic orbits. See also [1, 2, 4, 5, 7, 8, 9]. A known
example of such a system is the so-called feed-forward network, studied in
for example [11, 14, 6, 10]. It is given by the equations

9x1 =f(x1, x2, . . . xn−1, xn, λ)

9x2 =f(x2, x3, . . . xn, xn, λ)

...
9xn =f(xn, xn, . . . xn, xn, λ) ,

(4.2.2)

and can be depicted by the network of Figure 4.1.

1 2 . . . n

Figure 4.1: A feed-forward network with n cells.

More precisely, Figure 4.1 shows the dependence of each cell as given
by the second entry of f . For example, the equation for cell 1 is given by
9x1 = f(x1, x2, . . . xn−1, xn, λ). Because f is evaluated here at x2 in the
second entry, we say that the state of cell 1 depends on the state of cell 2 (in
a way described by the second entry of f). Therefore, the network of Figure
4.1 contains an arrow from cell 2 to cell 1. The other entries of f are then
obtained by concatenating the black arrows a fixed number of times, and by
adding self-loops to describe the dependence of each cell on their own state
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by the first entry of f .
In [14] it is shown that in the case of V = R and Ω ⊂ R the system (4.2.2)

has generically one of two steady state bifurcations from a fully synchronous
point, i.e. a point with x1 = · · · = xn. These bifurcations are a fully
synchronous saddle node bifurcation and a synchrony breaking bifurcation.
This latter bifurcation has, in addition to a fully synchronous branch, n− 1
branches scaling as |λ|l1 to |λ|ln−1 , where we have set li := 1

2i−1 .
Let us also look at the following network

9x1 =f(x1, x2, x3, x4, λ)

9x2 =f(x2, x3, x4, x3, λ)

9x3 =f(x3, x4, x3, x4, λ)

9x4 =f(x4, x3, x4, x3, λ) ,

(4.2.3)

depicted by Figure 4.2. Again, we have only shown the dependence of each
cell through the second entry of the response function f . The third and
fourth correspond to concatenating the given arrows two and three times.

1 2 3 4

Figure 4.2: The network of equation 4.2.3.

The network (4.2.3) is similar to the feed-forward network (4.2.2). How-
ever, in a feed-forward network there is one cell whose state depends only
on itself and that influences all the others, whereas in the network of (4.2.3)
there are two cells that are only influenced by themselves and by each other,
but that in their turn feed into the other cells. Nevertheless, by identifying
the cells 3 and 4 one obtains the 3-cell feed-forward network back:

9x1 =g(x1, x2, x3, λ)

9x2 =g(x2, x3, x3, λ)

9x3 =g(x3, x3, x3, λ) ,

(4.2.4)

for g(x1, x2, x3, λ) := f(x1, x2, x3, x3, λ). Note that any (smooth) map
g : V 3 × Ω→ V can be obtained by restricting some (smooth) map
f : V 4 ×Ω→ V to the space {x3 = x4}. As it turns out, the generic steady
state bifurcations of (4.2.4) are generic in (4.2.3) as well. We will show that
this is a consequence of a more general theorem, relating the bifurcations in
a network with a set of cells that only influence each other (such as the cells
3 and 4 in (4.2.3)) to that of the same network with these cells identified (i.e.
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the system (4.2.4)). More specifically, a projection block will be a set of cells
in a network that only feel each other and that influence every other cell, in
a way to be made precise later on. The main theorem of this paper can be
roughly summarized as the following, see Theorem 4.7.3 and Corollary 4.7.8.

Theorem 4.2.1. Let B be a projection block in a homogeneous coupled cell
network N and let NP denote the network equal to N with the block B
identified to a point. We may naturally identify any network vector field for
the network NP as a network vector field for the network N restricted to some
invariant subspace. Suppose a smooth network vector field γf for the network
NP has a fully synchronous steady state point x0. Suppose furthermore that
the center subspace of the linearization Dγf (x0) at x0 contains no non-trivial
fully synchronous points. Let us denote a center manifold of this system by
Mc.

Then in the set of smooth network vector fields for N that, when restricted
to the phase space of NP are equal to γf , there exists an open and dense set
of vector fields with center manifold equal to Mc as well. In particular, any
local bifurcation that occurs in the Np-system occurs in all these N -systems,
without additional branches of bounded solutions.

This result relies mainly on an investigation of the possible center subspaces
of a network vector field. It turns out these can be described in terms of the
invariant subspaces of a certain monoid-representation, which is the main
theme of this paper.

The rest of this paper is set up as follows. In Section 2 we introduce some
of the techniques we will be using in subsequent sections, most notably that
of a fundamental network and that of center manifold reduction for homo-
geneous coupled cell networks. Likewise, Section 3 serves to introduce the
details of monoid-representations needed throughout this paper. In Section
4 we introduce quotient monoids, which we relate to quotient networks in
Section 5. In Section 6 we introduce the notion of a projection block and
formulate and prove the main result of this paper. In Section 7 we then work
out the machinery we have developed on a generalization of a feed-forward
network.
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4.3 Preliminaries

Recall that a homogeneous coupled cell network is a system of the general
form

9x1 =f(xσ1(1), . . . xσn(1))

9x2 =f(xσ1(2), . . . xσn(2))

...
9xN =f(xσ1(N), . . . xσn(N)) ,

(4.3.1)

The underlying network structure N can be described by the set of nodes
C := {1, . . . N} and the set of interaction functions Σ = {σ1, . . . σn}, σi :
C → C. Whereas Σ a priori need not satisfy any additional conditions, this
often means that the set of systems of the form (4.3.1) is too intractable to
work with. For example, both the composition and the Lie-bracket of two
vector fields of the form (4.3.1) need not be of this form any longer. We will
therefore slightly enlarge the class of vector fields we consider, by enlarging
the set Σ to include the identity Id : C → C and all compositions of two
or more functions that appear in Σ. Note that this new class of network
vector fields includes all the original ones, as the response function f may
only depend formally on the new variables. This setup is described in more
detail in [13, 16, 15, 14], where it is shown that this larger class of vector
fields is closed under taking compositions and Lie-brackets.
By the above discussion, we will henceforth always assume that Σ is closed
under multiplication and contains the identity Id : C → C. This means that
Σ is a monoid. In particular, we may construct the regular representation
(V n, AΣ) of Σ. Here, the action of Σ is given by (AσX)τ = Xτ◦σ for σ, τ ∈ Σ
and we identify V n with

⊕
σ∈Σ V . It can be seen that indeed Aσ◦Aτ = Aσ◦τ

for all σ, τ ∈ Σ and that AId = Id|V n . As it turns out, the equivariant vector
fields on (V n, AΣ) are exactly the coupled cell network vector fields Γf given
by

Γf (X)σ1 =f(Xσ1◦σ1 , . . . Xσn◦σ1)

Γf (X)σ2 =f(Xσ1◦σ2 , . . . Xσn◦σ2)

...
Γf (X)σn =f(xσ1◦σn , . . . Xσn◦σn) .

(4.3.2)

We will explain monoid-representations, including the regular representation
in more detail in the next section. The motivation for considering the regular
representation is as follows. Given a network vector field (4.3.1) we call a
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subspace of the phase space a synchrony space when it is given by equations
of the form xi = xj for certain nodes i and j. In other words, a synchrony
space is just a poly-diagonal subspace. A synchrony space is then called ro-
bust if it is a flow-invariant space for any network vector field (4.3.1). Since
we have defined network vector fields Γf on (V n, AΣ), we may equally well
speak of (robust) synchrony spaces on this latter space. It follows that a
synchrony space of (V n, AΣ) is robust if and only if it is flow-invariant for
any equivariant vector field. Perhaps counter-intuitive is that such a robust
synchrony space need in general not be respected by the symmetries Aσ of
(V n, AΣ). For any cell p ∈ C, the synchrony space
SynN,p := {Xσi = Xσj if σi(p) = σj(p)} ⊂ (V n, AΣ) is robust, hence flow-
invariant for any vector field Γf . Moreover, if the network N has a cell p ∈ C
such that {σ(p) : σ ∈ Σ} = C, then the vector fields Γf |SynN,p are exactly
the coupled cell network vector fields of (4.3.1). We therefore say that the
network of (4.3.2) is the fundamental network of the network N . Similarly,
we call Γf the fundamental network vector field of (4.3.1). We say that p is a
fully dependent cell of the network N if the condition {σ(p) : σ ∈ Σ} = C is
satisfied. Unless stated otherwise, all of the networks in this article will have
such a cell, so that they can be realized as sub-systems of their fundamental
network vector fields. More on homogeneous coupled cell networks can be
found in for example [13, 12, 16, 15, 14, 11, 3].
In [13], the authors have developed a center manifold theorem for homo-
geneous coupled cell networks around a fully synchronous point. The first
result is that for a fundamental network vector field there always exists a
local center manifold that is invariant under the monoid-symmetries. The
second is one that classifies all the vector fields one might obtain by reducing
Γf to its center manifold, i.e. the reduced vector fields. To describe these, we
say that an AΣ-invariant subspaceW of (V n, AΣ) is complementable if there
exists an AΣ-invariant subspace W ′ such that V n = W ⊕W ′. Whereas any
invariant space under the linear action of a finite group always has an invari-
ant complement, this is in general not true for the representation of a finite
monoid. The result of [13] is that the possible reduced vector fields of the
fundamental network are exactly those that are conjugate to an equivariant
vector field on a complementable invariant space of (V n, AΣ). Furthermore,
such a conjugacy can always be found in such a way that it preserves the
robust synchrony spaces. Therefore, the reduced vector fields of (4.3.1) are
exactly those of Γf restricted to SynN,p.
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4.4 Representation Theory of Monoids

In this section we will briefly explain the definitions and results about monoid
representations relevant to this paper. Recall that a monoid is a set Σ
together with an associative multiplication and a unit e ∈ Σ. In other
words, there exists a map ◦ : Σ × Σ → Σ such that (a ◦ b) ◦ c = a ◦ (b ◦ c)
for all a, b, c ∈ Σ and a ◦ e = e ◦ a = a for all a ∈ Σ. We will furthermore
always assume in this paper that Σ is finite, i.e. contains only finitely many
elements.

Definition 4.4.1. 1. Let Σ be a finite monoid and let W be a finite dimen-
sional real vector space. A representation of Σ on W is a map A from Σ to
L(W,W ) (the space of linear maps from W to itself) such that

• A(σ)A(τ) = A(σ ◦ τ) for all σ, τ ∈ Σ

• A(e) = IdW .

We will often denote A(σ) by Aσ for σ ∈ Σ and will use the notation (W,AΣ)
to denote a representation of Σ on W .
2. Given a representation (W,AΣ), a linear subspace U ⊂ W is called
invariant if Aσu ∈ U for all u ∈ U and σ ∈ Σ. We will call the invariant
space U complementable if there exists an invariant subspace U ′ ⊂ W such
that W = U ⊕ U ′.
3. Given two representations (W,AΣ) and (W ′, A′Σ) of the monoid Σ, we
call a map f : W →W ′ equivariant if f ◦Aσ = A′σ ◦ f for all σ ∈ Σ.

Given a vector space V and a monoid Σ, we can construct the representation
(
⊕

σ∈Σ V,Aσ) as follows: A vector X in
⊕

σ∈Σ V can uniquely be written as
X =

∑
σ∈ΣXσ for Xσ ∈ V . As such, we define the action of Σ on

⊕
σ∈Σ V

by (AσX)τ = Xτ◦σ for all τ, σ ∈ Σ and X ∈
⊕

σ∈Σ V . It can easily be
verified that this indeed defines a representation. If #Σ = n then we will
denote this representation by (V n, AΣ) and we will refer to it as the regular
representation of the monoid Σ. As we have noted in Section 2 the equiv-
ariant maps from (V n, AΣ) to itself are exactly the admissible vector fields
of the fundamental network of a coupled cell network with monoid Σ.

If we are given a linear equivariant map B from a representation (W,AΣ)
to itself, then it is not hard to see that ker(B) and Im(B) are examples
of invariant spaces in (W,AΣ). Likewise for all µ ∈ R and λ ∈ C\R the
span of the eigenvectors of B, ker(B − µ Id) and ker((B − λ Id)(B − λ̄ Id))
are examples of invariant spaces. In general none of the above examples
are complementable though. Other examples of invariant spaces are the
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generalized eigenspaces of B, WB,λ := ker((B−λ Id)n(B− λ̄ Id)n) for λ ∈ C
and with n := dim(W ). These examples are complementable, as we have
the direct sum decomposition

W =
⊕

λ∈EV(B)

WB,λ , (4.4.1)

where EV(B) ⊂ C denotes the set of eigenvalues if B (containing only one
of each complex pair). We also note that any decomposition W = U ⊕ V
into invariant spaces gives rise to a projection with image U and kernel V ,
which is readily seen to be an equivariant map. Conversely, any equivariant
projection gives rise to a decomposition into its image and its kernel, both
of which are invariant and therefore complementable.

Another important notion for the representation of monoids is that of an
indecomposable representation.

Definition 4.4.2. A representation (U,AΣ) is called indecomposable when
it holds that U 6= {0} and that U cannot be written in a non-trivial way as
the direct sum of two invariant spaces.

Note that indecomposable representations can still contain non-trivial invari-
ant spaces, albeit without invariant complements. By iteratively decompos-
ing any representation (W,AΣ) into invariant spaces, one can see that any
representation can be written as the direct sum of indecomposable represen-
tations (this process terminates by the fact thatW is finite dimensional, and
must do so in a decomposition into indecomposable representations). It is
shown in [15] that any such decomposition is furthermore unique. In other
words, given two decompositions of (W,AΣ) into indecomposable represen-
tations

W =

p⊕
i=1

Wi =

q⊕
j=1

W ′j , (4.4.2)

it follows that p = q and that Wi is isomorphic to W ′i for all i ∈ {1, . . . p},
possibly after reordering (we say that two representations are isomorphic
when there exists an invertible linear equivariant map between them, from
which it follows that the inverse is a linear equivariant map as well).

Given an equivariant linear map B from an indecomposable represen-
tation (U,AΣ) to itself, it follows from the decomposition (4.4.1) that B
necessarily has either one real eigenvalue or one pair of complex conjugate
eigenvalues. Consequently, B is either nilpotent or invertible. This result
is often called Schur’s lemma, after an analogous (but stronger) result for
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the representation of finite groups over fields of characteristic 0. It can then
be seen that in the case of an indecomposable representation the sum of
two equivariant nilpotent maps, as well as the composition of an equivariant
nilpotent map with any equivariant map is again nilpotent. In other words, if
we denote by EndΣ(U) the linear equivariant maps from (U,AΣ) to itself, and
by NilΣ(U) ⊂ EndΣ(U) the ones that are nilpotent, then NilΣ(U) is a two-
sided ideal in EndΣ(U). Consequently, the quotient ring EndΣ(U)/NilΣ(U)
is a finite dimensional division algebra over R. This has important conse-
quences, as a theorem by Frobenius states that the only finite dimensional
division algebras over R are isomorphic to either R, C or H (the quater-
nions). As a result, we get the following classification of indecomposable
representations.

Definition 4.4.3. The indecomposable representation (U,AΣ) is called

• of real type if EndΣ(U)/NilΣ(U) ∼= R,

• of complex type if EndΣ(U)/NilΣ(U) ∼= C or

• of quaternionic type if EndΣ(U)/NilΣ(U) ∼= H.

As a last remark we give the following theorem. Its proof can be found
in for example [15].

Theorem 4.4.4. Let B be an equivariant linear map from the indecompos-
able representation (U,AΣ) to the indecomposable representation (U ′, A′Σ),
and let B′ be an equivariant linear map from (U ′, A′Σ) to (U,AΣ). If B ◦B′
is invertible, then both B and B′ are isomorphisms of representations. In
particular, if (U,AΣ) is not isomorphic to (U ′, A′Σ) then B ◦B′ is nilpotent.

4.5 Quotient Monoids and the Regular Repre-
sentation

In this section we formulate and prove a result that relates the regular rep-
resentation of a monoid to that of a so-called quotient monoid. This result
will be an important ingredient for the main theorem 4.2.1 as formulated
in the introduction, where it is used to relate the generic bifurcations of a
network to that of a specific quotient network.

Definition 4.5.1 (Homomorphisms of monoids and quotient monoids). Let
Σ and T be monoids. A function π : Σ → T is called a homomorphism of
monoids when it satisfies
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• π(eΣ) = eT for the units eΣ ∈ Σ and eT ∈ T ,

• π(σ · σ′) = π(σ) · π(σ′) for all σ, σ′ ∈ Σ, where multiplication is to be
understood in Σ and T , respectively.

We say that T is a quotient monoid of Σ if there exists a surjective homo-
morphism of monoids π : Σ→ T .

Remark 4.5.2. Given a surjective function π between monoids Σ and T such
that π(σ · σ′) = π(σ) · π(σ′) for all σ, σ′ ∈ Σ, it follows immediately that
π(eΣ) = eT . Namely, we have that π(eΣ) · π(σ) = π(eΣ · σ) = π(σ) and
likewise that π(σ) · π(eΣ) = π(σ) for all σ ∈ Σ. By surjectivity of π we have
that {π(σ) : σ ∈ Σ} = T and hence we see that π(eΣ) is a unit element in
T . Note furthermore that an element that is a right unit or a left unit (and
specifically both) in a monoid is necessarily the unit of this monoid, as its
right or left product with the unit would otherwise be ill-defined. 4

Theorem 4.5.3. Let π : Σ→ T be a surjective homomorphism of monoids,
so that T is a quotient monoid of the finite monoid Σ. Let (V m, AT ) and
(V n, AΣ) be their respective regular representations. The synchrony space
Synπ := {Xσ = Xσ′ if π(σ) = π(σ′)} ⊂ (V n, AΣ) is robust. Furthermore, it
is an invariant space of (V n, AΣ) on which the action of Σ depends only on
the images π(σ) for σ ∈ Σ. In particular, this invariant synchrony space can
be seen as a representation space of T and as such it is in fact isomorphic
to the regular representation (V m, AT ) of T .

Proof. We will start by showing that Synπ is a robust synchrony space. In
[16] it is shown that this is the case when the partition dictating which nodes
are identified in the synchrony space is respected by the elements of Σ. See
also [17]. In our case the partition corresponding to the synchrony space is
{π−1(τ) : τ ∈ T}. Hence, for every σ ∈ Σ we need to show that σ·σ′ and σ·σ′′
are in the same set π−1(τ) if σ′ and σ′′ are in the same set π−1(τ ′). In other
words, we need to show that π(σ ·σ′) = π(σ ·σ′′) if π(σ′) = π(σ′′). However,
this is immediate as π(σ · σ′) = π(σ) · π(σ′) = π(σ) · π(σ′′) = π(σ · σ′′).
Next, we show that Synπ is an invariant space. Recall that Aσ is given by
(AσX)σ′ = Xσ′·σ for σ, σ′ ∈ Σ. Hence, we see that
Synπ = {Xσ = Xσ′ if π(σ) = π(σ′)} is invariant if for every σ ∈ Σ we have
that π(σ′ · σ) = π(σ′′ · σ) whenever π(σ′) = π(σ′′). This condition is indeed
satisfied because π(σ′ · σ) = π(σ′) · π(σ) = π(σ′′) · π(σ) = π(σ′′ · σ).
Finally, a similar argument shows that Aσ and Aσ′ act the same on Synπ
if π(σ) = π(σ′). Therefore, we may write Aπ−1(τ) := Aσ|Synπ for any σ ∈
π−1(τ). Let us furthermore set {Xπ−1(τ)}τ∈T as coordinates for Synπ, where
we have that Xσ = Xπ−1(τ) whenever π(σ) = τ . Note that we use here

113



CHAPTER 4. PROJECTION BLOCKS IN HOMOGENEOUS COUPLED
CELL NETWORKS

that none of the sets π−1(τ) for τ ∈ T is empty, as π is assumed to be
surjective. We then see that the action of Σ on Synπ can be written as
(Aπ−1(τ)X)π−1(τ ′) = Xπ−1(τ ′·τ). Hence, identifying Xπ−1(τ) with Xτ and
Aπ−1(τ) with Aτ for every τ ∈ T , we see that Synπ ⊂ (V n, AΣ) can be
identified with (V m, AT ) as representations of T .

In light of the previous theorem, we may identify (V m, AT ) with Synπ ⊂
(V n, AΣ). Using this identification, we can associate to any linear subspace
W of (V n, AΣ) a linear subspace W ∩ Synπ of (V m, AT ). The following
theorem tells us that the function W 7→W ∩ Synπ respects the structure of
a decomposition into indecomposable representations.

Theorem 4.5.4. Let V n =
⊕k

i=1Wi be a decomposition of (V n, AΣ) into
indecomposable representations. Then

V m =
⊕
Wi

Wi ∩ Synπ (4.5.1)

is a decomposition of (V m, AT ) into indecomposable representations. Con-
versely, if V m =

⊕l
i=1 Ui is a decomposition of (V m, AT ) into indecom-

posable representations, then there exists a decomposition V n =
⊕k

i=1Wi

of (V n, AΣ) into indecomposable representations (with k ≥ l) such that
Ui = Wi ∩ Synπ for 1 ≤ i ≤ l. Furthermore, we have the following rela-
tions between Wi and Wi ∩ Synπ

• If Wi ∩ Synπ 6= {0} then Wi and Wi ∩ Synπ are of the same type (real,
complex or quaternionic).

• if Wi∩Synπ 6= {0} and Wj ∩Synπ 6= {0} then Wi is isomorphic to Wj

if and only if Wi ∩ Synπ is isomorphic to Wj ∩ Synπ.

• if Wi ∩ Synπ 6= {0} but Wj ∩ Synπ = {0} then Wi and Wj are not
isomorphic.

The main ingredient of the proof will be the following lemma.

Lemma 4.5.5. For any equivariant vector field ΓTf on (V m, AT ) ' Synπ we
can find an equivariant vector field ΓΣ

f̃
on (V n, AΣ) such that ΓΣ

f̃
|Synπ= ΓTf .

Proof. Let us assume we are given the equivariant vector field ΓTf on (V m, AT )

corresponding to the function f = (ΓTf )eT : V m → V , where eT denotes the
unit in T . For every τ ∈ T we may pick one element στ ∈ Σ such that
π(στ ) = τ . In other words, we pick one representative out of every class
π−1(τ). Note that none of the sets π−1(τ) is empty, as π is surjective.
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Writing Σ = {σ1 . . . σn} and T = {τ1, . . . τm}, we then define the function
f̃ : V n → V given by
f̃(Xσ1 . . . Xσn) := f(Xστ1

. . . Xστm
). In particular, it follows that f̃ |Synπ= f .

We claim that ΓΣ
f̃
is an equivariant vector field satisfying ΓΣ

f̃
|Synπ= ΓTf . First

of all, because Synπ is a robust synchrony space of (V m, AT ) we see that ΓΣ
f̃

indeed sends elements of Synπ to itself. Next, because Synπ is an invariant
space on which the action of Σ coincides with that of T , we may conclude
that ΓΣ

f̃
|Synπ is a T -equivariant vector field on (V m, AT ). In particular, we

have that ΓΣ
f̃
|Synπ= ΓTg for some function g : V m → V . Finally, it remains

to show that g = f . Per definition, we have that g = (ΓTg )eT . Using the
identification between Synπ and (V m, AT ), we see that g = (ΓΣ

f̃
|Synπ )σ for

any element σ ∈ π−1(eT ). In particular, we know that the unit in Σ is
contained in π−1(eT ). We therefore see that g = (ΓΣ

f̃
|Synπ )eΣ = f̃ |Synπ= f .

This proves the lemma.

Given an equivariant vector field on (V m, AT ), we will generally use a tilde
to denote an equivariant extension on (V n, AΣ) in the spirit of Lemma 4.5.5.
Note that it follows from the proof of Lemma 4.5.5 that the extension of a
linear vector field can be taken to be linear as well. Furthermore, by fixing
the choice of representatives in the proof of Lemma 4.5.5, we see that any
smooth family of vector fields on (V m, AT ) can be extended to a smooth
family of vector fields on (V n, AΣ).

Proof of Theorem 4.5.4. Let V n =
⊕k

i=1Wi be a decomposition of (V n, AΣ)
into invariant spaces. The projections Pi : V n → Wi ⊂ V n on the different
components are equivariant maps and therefore leave the space Synπ invari-
ant. In particular, for any element v ∈ Synπ we see that v =

∑k
i=1 Pi(v) is

a decomposition into elements of Wi ∩ Synπ. Since any decomposition into
elements of Wi, hence into elements of Wi ∩ Synπ is unique, it follows that

Synπ =
⊕

Wi∩Synπ 6={0}

Wi ∩ Synπ (4.5.2)

is a decomposition of Synπ ' (V m, AT ) into invariant spaces.
Let us now assume one of the components Wi is indecomposable. We will
show that this implies thatWi∩Synπ is indecomposable as well, by assuming
the converse and arriving at a contradiction. Suppose we can write Wi ∩
Synπ = U0⊕U1, where U0 and U1 are invariant spaces both unequal to {0}.
Denote by PT1 : Synπ → U1 ⊂ Synπ the projection onto U1 corresponding
to the decomposition Wi ∩ Synπ = U0 ⊕ U1 and to decomposition (4.5.2).
In particular, we see that PT1 |U0

= 0 and that PT1 |U1
= Id|U1

. Because PT1
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is an equivariant map, it follows from Lemma 4.5.5 that there exists an
equivariant map ĂPT1 on (V n, AΣ) such that ĂPT1 |Synπ= PT1 . Let us continue to
denote by Pi : V n →Wi ⊂ V n the projection onto Wi corresponding to the
decomposition V n =

⊕k
i=1Wi. The map H := Pi ◦ ĂPT1 |Wi

: Wi → Wi is an
equivariant map from the indecomposable representation space Wi to itself.
Therefore, it is either invertible or nilpotent. This is a contradiction though,
as Pi ◦ ĂPT1 |U1

= Pi ◦ Id|U1
= IdU1

, so H is not nilpotent, and Pi ◦ ĂPT1 |U0
=

0, so H is not invertible. We conclude that indeed Wi ∩ Synπ has to be
indecomposable if the component Wi is. In particular, if V n =

⊕k
i=1Wi is a

decomposition into indecomposable sub-representations then so is expression
(4.5.2).
Now suppose that conversely we are given a decomposition Synπ =

⊕l
i=1 Ui

into (positive dimensional) sub-representations. Let us choose a set {λi}
of l distinct values in R and define the linear map P{λi} : Synπ → Synπ
given by P{λi}|Ui= λi · Id|Ui for all i ∈ {1, . . . l}. Because the spaces Ui are
invariant it follows that the map P{λi} is equivariant. In particular, we may
conclude from Lemma 4.5.5 that there exists an equivariant map rP{λi} from
(V n, AΣ) to itself that restricts to P{λi}. Let us denote by EV( rP{λi}) the set
of eigenvalues of the map rP{λi} (containing only one of each complex pair).
Note that {λi} is included in EV( rP{λi}), as {λi} is the set of eigenvalues
of P{λi} = rP{λi}|Synπ . Denoting by Wµ the generalized eigenspace of rP{λi}

corresponding to the eigenvalue µ ∈ EV( rP{λi}), we get a decomposition of
(V n, AΣ) into invariant spaces

V n =
⊕

µ∈EV( rP{λi})

Wµ . (4.5.3)

Note that we haveWλi∩Synπ = Ui for all i ∈ {1, . . . l} andWµ∩Synπ = {0}
if µ /∈ {λi}. Hence, the decomposition (4.5.3) gives rise to the decomposition
Synπ =

⊕l
i=1 Ui in the sense of the first part of the theorem. Moreover, we

may further decompose Wλi = ⊕pj=1W
j
λi

into indecomposable representa-
tions, which gives rise to a decomposition of Ui. Assuming Ui is indecom-
posable, we conclude that there is a j ∈ {1, . . . p} such that Ui = W j

λi
∩Synπ

and such that Ui ∩ (W q
λi
∩ Synπ) = W q

λi
∩ Synπ = {0} for all q 6= j. Hence,

the components Wi may be chosen to be indecomposable themselves.
Next, we show that Wi ∩ Synπ and Wi are of the same type if both are
indecomposable and if Wi ∩ Synπ 6= {0}. Given any equivariant map φ :
Wi → Wi, we may extend this map to an equivariant map φ′ : (V n, AΣ) →
(V n, AΣ) by setting φ′|Wi= φ and φ′|Wj= 0 for j 6= i. Because the map
φ′ is an equivariant vector field on (V n, AΣ), it sends the robust synchrony
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space Synπ to itself. From this we conclude that φ restricts to an equivariant
map from Wi ∩ Synπ to itself. In other words, if we denote by EndΣ(Wi)
and EndΣ(Wi ∩ Synπ) the space of Σ-endomorphisms on Wi and Wi ∩ Synπ
respectively, then restriction defines a linear map

R : EndΣ(Wi)→ EndΣ(Wi ∩ Synπ)

φ 7→ φ|Wi∩Synπ .
(4.5.4)

Moreover, if φ ∈ EndΣ(Wi) is nilpotent then so is φ|Wi∩Synπ . Hence, R
factors through to a map

[R] : EndΣ(Wi)/NilΣ(Wi)→ EndΣ(Wi ∩ Synπ)/NilΣ(Wi ∩ Synπ)

[φ] 7→ [R(φ)] ,
(4.5.5)

where NilΣ(Wi) ⊂ EndΣ(Wi) and NilΣ(Wi ∩ Synπ) ⊂ EndΣ(Wi ∩ Synπ)
denote the nilpotent elements. We will now show that [R] is a bijection,
thereby proving that Wi ∩ Synπ and Wi are of the same type. Injectivity
of [R] follows from the fact that R(φ) := φ|Wi∩Synπ is invertible whenever
φ ∈ EndΣ(Wi) is. As for surjectivity, this is true for [R] if it is true for R.
Therefore, let
ψ ∈ EndΣ(Wi ∩Synπ) be given, we will construct an element φ ∈ EndΣ(Wi)
such that R(φ) = ψ. For this purpose, we first construct an equivariant
map ψ′ : Synπ → Synπ such that ψ′|Wi∩Synπ= ψ, for example by letting
ψ′ vanish on an invariant complement of Wi ∩ Synπ in Synπ. By Lemma
4.5.5 there exist an equivariant extension rψ′ of ψ′ to (V n, AΣ). The map
φ := Pi ◦ rψ′|Wi is then an element of EndΣ(Wi). Furthermore, we have
φ|Wi∩Synπ= Pi ◦ rψ′|Wi∩Synπ= Pi ◦ψ′|Wi∩Synπ= Pi ◦ψ = ψ. This proves that
R and therefore [R] is surjective and hence that Wi and Wi ∩ Synπ are of
the same type.
Next, suppose Wi and Wj are isomorphic indecomposable representations.
We will show that there exists an invertible equivariant map from Wi∩Synπ
to Wj ∩ Synπ. To this end, let α be an isomorphism from Wi to Wj . As
before, we can expand α to an equivariant map α′ on (V n, AΣ) by letting
α′ vanish on some complement of Wi. The map α′ then sends the space
Synπ to itself. In particular, we see that α′ sends Wi ∩ Synπ to Wj ∩ Synπ.
Moreover, since α′|Wi

= α, we see that α′|Wi∩Synπ is injective. Repeating
this procedure with α replaced by α−1 and with the roles of Wi and Wj

reversed, we see that there exist injective equivariant maps from Wi ∩ Synπ
to Wj ∩ Synπ and vice versa. Hence, both are bijections. This shows that if
Wi and Wj are isomorphic and if Wi ∩ Synπ 6= {0}, then Wj ∩ Synπ 6= {0}
and Wi ∩ Synπ and Wj ∩ Synπ are isomorphic.
Finally, we will show that if Wi and Wj are indecomposable, and if Wi ∩
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Synπ 6= {0} and Wi ∩ Synπ 6= {0} are isomorphic, then Wi and Wj are
isomorphic as well. For this purpose, let βij : Wi ∩ Synπ →Wj ∩ Synπ and
βji : Wj ∩Synπ →Wi∩Synπ be isomorphisms. As before, we can extend βij
and βji to equivariant maps β′ij , β′ji : Synπ → Synπ by letting them vanish
on some compliment of Wi ∩ Synπ and Wj ∩ Synπ, respectively. Next, by
Lemma 4.5.5 there exist maps Ăβ′ij and Ăβ′ji on (V n, AΣ) that restrict to β′ij
and β′ji on Synπ and hence to βij and βji on Wi ∩ Synπ and Wj ∩ Synπ,
respectively. Therefore, the maps Bij := Pj ◦ Ăβ′ij |Wi : Wi → Wj and Bji :=

Pi ◦ Ăβ′ji|Wj : Wj → Wi are equivariant and likewise restrict to βij and βji
on Wi ∩ Synπ and Wj ∩ Synπ. We finish the proof by noting that the map
Bji ◦ Bij : Wi → Wj → Wi is an equivariant map that is the composition
of two equivariant maps between indecomposable representations. Hence, it
is either nilpotent or we have that Wi and Wj are isomorphic. The former
can however not be, as Bji ◦Bij restricts to the invertible function βji ◦βij :
Wi∩Synπ →Wi∩Synπ. We conclude that indeedWi andWj are isomorphic.
This proves the theorem.

By the strong correlation between indecomposable representations and generic
bifurcations as laid out in the previous sections, Theorem 4.5.4 can be read
as a result relating the generic bifurcations of two homogeneous networks.
More specifically, such a result holds if the monoid of the one network is a
quotient monoid of the other network. In the next section we will further
explore this relation.

4.6 Quotient Networks and Quotient Monoids

Let N be a homogeneous coupled cell network with nodes C and monoid
Σ. Recall that a balanced partition of N is a partition P = {P1 . . . Ps} of
the set C such that the elements of Σ respect P . In other words, for every
σi ∈ Σ it holds that if q, r ∈ C are two nodes from the same partition class
Pj , then σi(q) and σi(r) are two elements from some same partition class
Pk. We will often use [q] to denote the partition class containing a node q,
i.e. we have [q] = Pj if and only if q ∈ Pj . In this notation the partition
being balanced means that [q] = [r] implies [σi(q)] = [σi(r)] for every σi ∈ Σ.
Hence, it follows that Σ naturally factors through to a set of functions from
the set of partition classes to itself, by setting σi([q]) := [σi(q)]. We will
furthermore identify two functions σi and σj if they act the same on the set
of partition classes. I.e. we write σi ∼ σj if and only if [σi(q)] = [σj(q)] for
all q ∈ C. The corresponding equivalence class of functions [σi] = [σj ] can
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then be seen as one well-defined function from the set of partition classes
to itself by writing [σi]([q]) := [σi(q)] for every q ∈ C. To summarize, we
may define a new homogeneous coupled cell network NP , whose set of nodes
is CP := {[q] : q ∈ C} = {Pj}sj=1 and whose arrows are described by the
functions ΣP := {[σi] : σi ∈ Σ}. Note that [Id] is the identity function on
CP , where Id ∈ Σ is the identity on C.
It can be seen that ΣP is closed under composition and is therefore a monoid
itself. Namely, we have

[σi] ◦ [σj ]([q]) = [σi]([σj(q)]) = [(σi ◦ σj)(q)] = [σi ◦ σj ]([q]) , (4.6.1)

for all q ∈ C and σi, σj ∈ Σ. In fact, it follows from equation (4.6.1) that
the map

πP : Σ→ ΣP

σi 7→ [σi]
(4.6.2)

satisfies πP (σi ◦σj) = πP (σi) ◦πP (σj) for all σi, σj ∈ Σ. Combined with the
fact that πP is a surjection, we get the following result.

Theorem 4.6.1. Let N = (C,Σ) be a homogeneous coupled cell network and
let NP = (CP ,ΣP ) be a quotient network of N corresponding to a balanced
partition P of N . Then, ΣP is a quotient monoid of Σ via the surjection
πP .

Remark 4.6.2. Suppose that p ∈ C is a fully dependent cell for the network
N . In other words, we have that {σi(p) : σi ∈ Σ} = C. It follows that
{[σi]([p]) : [σi] ∈ ΣP } = {[σi(p)] : σi ∈ Σ} = CP . Hence, we see that [p] is a
fully dependent cell for the network NP .
For this reason, we may identify the network NP with a synchrony space
SynNP ,[p] of its regular representation (V m, AΣP ), where we have set m :=
#ΣP . Specifically, this synchrony space is given by

SynNP ,[p] := {X[σi] = X[σj ] if [σi]([p]) = [σj ]([p])} ⊂ (V m, AΣP ) . (4.6.3)

Furthermore, by the previous section we may identify (V m, AΣP ) with a
synchrony space SynπP ⊂ (V n, AΣ), given by

SynπP := {Xσi = Xσj if [σi] = [σj ]} ⊂ (V n, AΣ) . (4.6.4)

Therefore we can realize the network NP as the synchrony space
SynNP ,[p] ∩SynπP of (V n, AΣ). This latter synchrony space is explicitly given
by

SynNP ,[p] ∩SynπP = {Xσi = Xσj if [σi]([p]) = [σj ]([p])}
= {Xσi = Xσj if [σi(p)] = [σj(p)]} ⊂ (V n, AΣ) .
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(4.6.5)

There is however a second way of identifying Np as a synchrony space of
(V n, AΣ). Namely by first identifying it with a synchrony space SynP of the
network N , and by then identifying N with the synchrony space

SynN,p := {Xσi = Xσj if σi(p) = σj(p)} ⊂ (V n, AΣ) . (4.6.6)

By this procedure Np corresponds to the synchrony space

SynP ∩SynN,p := {Xσi = Xσj if [σi(p)] = [σj(p)]} ⊂ (V n, AΣ) . (4.6.7)

In particular we see that the expressions (4.6.5) and (4.6.7) agree, meaning
that the two identifications of the network NP in (V n, AΣ) coincide. 4
Remark 4.6.3. Suppose we are given a homogeneous coupled cell network
N (with a fully dependent cell) and a quotient network NP . To understand
the bifurcations in a fully synchronous point of the network NP we may
use center manifold reduction in the space (V m, AΣP ) corresponding to the
fundamental network of Np. In particular, the possible reduced vector fields
on (V m, AΣP ) are exactly all equivariant vector fields on a complementable
subspace W ⊂ V m. The possible reduced vector fields for Np are then ex-
actly these vector fields restricted to W ∩ SynNP ,[p].
By Theorems 4.5.3 and 4.5.4 we may identify the space (V m, AΣP ) with a
robust synchrony space SynπP ⊂ (V n, AΣ) and find a complementable sub-
space W ′ ⊂ V n such that W = W ′ ∩SynπP . Furthermore, if W decomposes
into indecomposable representations as

W =
⊕
i∈I

Wni
i , (4.6.8)

for some finite counting set I, then W ′ can be chosen to decompose into
indecomposable representations as

W ′ =
⊕
i∈I

W ′
ni
i , (4.6.9)

where we have that Wi and W ′i are of the same type (i.e. real, complex or
quaternionic) for all i ∈ I. It follows from Lemma 4.5.5 that the reduced vec-
tor fields of NP are the equivariant vector fields on some sub-representation
W ′ ⊂ V n restricted to W ′ ∩ SynπP ∩SynNP ,[p].
Likewise, reduced vector fields for the network N are equivariant vector
fields on W ′ restricted to W ′ ∩ SynN,p. Since we know from Remark 4.6.2
that the robust synchrony spaces SynπP ∩SynNP ,[p] and SynP ∩SynN,p co-
incide, we have that (W ′ ∩ SynN,p) ∩ SynP = W ′ ∩ SynN,p ∩SynP = W ′ ∩
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SynπP ∩SynNP ,[p]. We conclude from this that the reduced vector fields of
NP are exactly those of N restricted to the synchrony space SynP . In par-
ticular, the possible dynamics on the center manifold of an NP system can
be obtained by restricting the possible dynamics on the center manifold of
an N system to the synchrony space SynP .
If (V n, AΣ) furthermore decomposes into distinct indecomposable represen-
tations, then it is known that a one-parameter steady state bifurcation gener-
ically occurs along one indecomposable representation of real type. See [15].
Now, from Theorem 4.5.4 it follows that (V m, AΣP ) decomposes into dis-
tinct indecomposable representations whenever (V n, AΣ) does. Moreover,
it follows that W ′ ∩ SynπP is of real type whenever W ′ is. From this we
conclude that in the case of distinct indecomposable representations, the
generic one-parameter steady state bifurcations of NP are exactly those of
N restricted to SynP . It is believed by the authors that the condition of
distinct indecomposable representations can be dropped. Furthermore, it is
believed that in the event of more bifurcation parameters, there are similar
results about the generalized kernel and center subspace being generically
a number of indecomposable representations of specific types. This would
further translate the generic bifurcations on N to the generic ones on NP .
4

4.7 Reduction by Projection Blocks

In view of Remark 4.6.3, it makes sense to look for complementable subspaces
W ′ of (V n, AΣ) such that W ′ ∩ SynN,p = W ′ ∩ SynN,p ∩SynP . In that case,
the reduced vector fields corresponding to W ′ on the network N are exactly
those corresponding to the sub-representation W ′ ∩ SynπP on the network
NP . In particular, the bifurcations corresponding to W ′ on the network N
are then exactly those on NP corresponding to W ′ ∩ SynπP . In this section
we will describe a class of networks that admit a quotient network on which
certain of the sub-representations indeed coincide.

Definition 4.7.1 (Blocks and projection blocks). Let N be a homogeneous
coupled cell network with nodes C and monoid Σ. A subset of nodes B ⊂ C
is called a block if there are no arrows in the graph of N going from a source
outside of B to a target inside of B. In other words, B is a block if and only
if σi(b) ∈ B for all b ∈ B and σi ∈ Σ.
A block B is called a projection block if there furthermore exists an element
κ ∈ Σ such that κ(C) = B and κ(B) = B.

A block B in a homogeneous coupled cell network N naturally gives rise to
a balanced partition. Namely, we say that q ∼ r if and only if q, r ∈ B.
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It is balanced because q, r ∈ B implies σi(q), σi(r) ∈ B for all σi ∈ Σ, per
definition of a block. The resulting quotient network of N corresponding to
this balanced partition can be obtained from N by identifying the points in
B with a single point [B]. Note that we then have [σi]([B]) = [B] for all
σi ∈ Σ.
A projection block roughly means that there are some colors of arrows that
restrict to a bijection on the block, and whose concatenations connect every
point in the network to this block. More precisely, every point in the network
can be traced to this block by following arrows of these colors in reverse
direction. The monoid element κ from Definition 4.7.1 is then found as the
product of sufficiently many terms corresponding to arrows of these colors.
This is the content of the following theorem.

Theorem 4.7.2. Let B be a block in a homogeneous coupled cell network
N with nodes C and monoid Σ. Suppose that Π ⊂ Σ is a generating set
for Σ. Then, B is a projection block if and only if there exists a subset
Θ = {θi}ti=1 ⊂ Π satisfying

• θi(B) = B for all θi ∈ Θ.

• For every point q ∈ C there exists a finite sequence {θi1 . . . θis} of
elements in Θ such that (θi1 ◦ . . . ◦ θis)(q) ∈ B.

Proof. We fix the generating set Π of Σ. First, we assume there exists a
subset Θ = {θi}ti=1 ⊂ Π such that the conditions of Theorem 4.7.2 hold.
We want to construct an element κ ∈ Σ satisfying κ(C) = B and κ(B) = B
as in Definition 4.7.1, and we will do so inductively. First, we note that if
σ ∈ Σ and τ ∈ Σ satisfy σ(B) = B and τ(B) = B, then we also have that
(σ ◦ τ)(B) = B. Now, if B exactly equals C then B is always a projection
block, by setting κ = Id. Hence, we next assume that B 6= C and choose a
point q0 ∈ C \ B. By assumption, there exists a sequence θI := θI1 . . . θIs
of elements in Θ such that θI(q0) ∈ B. It follows that θI(B) = B, and so if
θI(C) = B we are done by setting κ = θI . Note that

θI(C) \B = θI(C \ (B ∪ {q0})) \B , (4.7.1)

by the fact that θI(B ∪ {q0}) = B. From equation (4.7.1) it follows that

#(θI(C) \B) ≤ #(C \ (B ∪ {q0})) < #(C \B) . (4.7.2)

Next, we choose an element q1 ∈ θ(C) \ B and a sequence θĨ such that
θĨ(q1) ∈ B. It follows that

(θĨ ◦ θI)(C) \B = θĨ [θI(C) \ (B ∪ {q1})] \B , (4.7.3)
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from which we again see that

#((θĨ ◦ θI)(C) \B) ≤ #(θI(C) \ (B ∪ {q1})) < #(θI(C) \B) . (4.7.4)

For convenience, we will redefine θI to be θĨ ◦ θI . Repeating this procedure,
we get a sequence of sets θI(C) \ B strictly decreasing in size. Because C
only has finitely many elements, we eventually get θI(C) \ B = ∅. Hence,
we see that θI(C) ⊂ B. Because we also have θI(B) = B, it follows that
θI(C) = B. Therefore, setting κ := θI we see that B is indeed a projection
block.
Conversely, if B is a projection block, we may write κ = σI := σi1◦. . .◦σis for
elements σj in the generating set Π. It follows that σI(q) ∈ B for every node
q ∈ C. Hence, we may define Θ ⊂ Π to be the set of all σj appearing in σI .
It remains to show that σj(B) = B for every σj ∈ Θ. However, we are given
that κ|B= σI |B is a bijection from B to itself B. Moreover, as any element of
Σ maps B into itself, we may write σI |B= (σi1◦. . .◦σis)|B= σi1 |B◦ . . .◦σis |B .
From this it follows that all of the σj |B are bijections from B to itself. This
proves the theorem.

Theorem 4.7.2 tells us that, in order to determine whether or not a block is
a projection block, one only has to look at any set of generators for Σ. In
particular, only at those elements of this set of generators that restrict to a
bijection on B. The block is then a projection block if and only if this subset
of generators connects every node to the block.
The following theorem gives the motivation for considering projection blocks
in homogeneous coupled cell networks. We recall the setting. If B is a projec-
tion block in a homogeneous coupled cell network N , then we will denote by
P the balanced partition corresponding to B and by NP the corresponding
reduced network. As usual, let (V n, AΣ) denote the fundamental network of
N and (V m, AΣP ) denote the fundamental network of NP . As we have seen
this latter space can be identified as the invariant synchrony space SynπP of
the former. Furthermore, using a fully dependent cell p ∈ C we have seen
that we may retrieve the network vector fields of N and NP by restricting
to the subspaces SynN,p ⊂ (V n, AΣ) and SynNP ,[p] ⊂ (V m, AΣP ) ∼= SynπP ,
respectively.

Theorem 4.7.3. Let B be a projection block in a homogeneous coupled cell
network N . There exists a decomposition

V n = W ⊕W ′ (4.7.5)

into invariant spaces such that

W ∩ SynN,p = W ∩ SynNP ,[p] (4.7.6)
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and

W ′ ∩ SynπP = Syn0 := {Xσ = Xτ ∀σ, τ ∈ ΣP } ⊂ (V m, AΣP ) . (4.7.7)

To prove Theorem 4.7.3 we first need two lemmas. The first one gives a
better motivation for the name ’projection block’.

Lemma 4.7.4. Let B be a block in a homogeneous coupled cell network N
with monoid Σ. B is a projection block if and only if there exists an element
ι ∈ Σ such that ι is idempotent, i.e ι ◦ ι = ι, and such that ι(C) = B.

Proof. First we assume B is a projection block. Let κ ∈ Σ be an element
satisfying κ(C) = κ(B) = B. It follows that κl(C) = κl(B) = B for all
l ∈ N>0, where we have set κl := κ◦. . .◦κ (l times). Next, because Σ is finite,
it follows that there exist constants M,N ∈ N>0 such that κM = κM+N .
From this we see that κM

′
= κM

′+N for allM ′ ≥M . In particular, choosing
s ∈ N>0 such that sN ≥ M we see that κsN = κ(s+1)N = . . . κ2sN . Hence,
setting ι := κsN we see that indeed ι ◦ ι = ι and ι(C) = B.
Conversely, ι satisfies ι(C) = B. Hence, for any element b ∈ B there exists
an element c ∈ C such that ι(c) = b. It follows that ι(b) = ι2(c) = ι(c) = b.
From this we conclude that ι(B) = B. Setting ι = κ then proves that B is
a projection block, which proves the theorem.

The next lemma states that an idempotent element in a monoid gives rise
to a splitting of the regular representation into two invariant spaces.

Lemma 4.7.5. Let ι be an idempotent element of a monoid Σ and let
(V n, AΣ) be the regular representation of Σ. The map
Bι : (V n, AΣ) → (V n, AΣ) defined by (BιX)σ = Xι◦σ for σ ∈ Σ is an
equivariant projection.

Proof. First we show that the map Bι is a projection. Because ι is idempo-
tent it follows that

((Bι)
2X)σ = (Bι(Bι(X)))σ = (Bι(X))ι◦σ

= Xι◦ι◦σ = Xι◦σ = (BιX)σ ,
(4.7.8)

for all σ ∈ Σ and X ∈ V n.
Next we show equivariance. For all σ, τ ∈ Σ and X ∈ V n we have

(Aσ(Bι(X)))τ = (Bι(X))τ◦σ = Xι◦τ◦σ ,

(Bι(Aσ(X)))τ = (Aσ(X))ι◦τ = Xι◦τ◦σ .
(4.7.9)

From this we see that AσBι = BιAσ for all σ ∈ Σ, and hence that Bι is an
equivariant map. This proves the claims of the lemma.
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Remark 4.7.6. Recall that an equivariant projection P on a representation
space U gives rise to a decomposition U = Im(P ) ⊕ ker(P ) into invariant
subspaces. In particular, for the map Bι we get a decomposition into the
invariant spaces

Im(Bι) = {Xσ = Xτ if ι ◦ σ = ι ◦ τ} , (4.7.10)

and

ker(Bι) = {Xι◦σ = 0 ∀σ ∈ Σ} . (4.7.11)

These will be important in the proof of Theorem 4.7.3. 4

Proof of Theorem 4.7.3. By Lemma 4.7.4, there exists an idempotent ele-
ment ι ∈ Σ such that ι(C) = B. It follows then from Lemma 4.7.5 and
Remark 4.7.6 that we get a decomposition of the regular representation
(V n, AΣ) into the invariant spaces

W := ker(Bι) = {Xι◦σ = 0 ∀σ ∈ Σ} ,

and

W ′ := Im(Bι) = {Xσ = Xτ if ι ◦ σ = ι ◦ τ} .

We will start by showing that

W ∩ SynN,p = W ∩ SynNP ,[p] (4.7.12)

It follows from Remark 4.6.5 that

SynNP ,[p] = SynNP ,[p] ∩ SynπP = SynP ∩SynN,p . (4.7.13)

Hence we see that

W ∩ SynNP ,[p] ⊂W ∩ SynN,p . (4.7.14)

Conversely, we note that

W ∩SynN,p = {Xι◦σ = 0 ∀σ ∈ Σ}∩{Xσ = Xτ if σ(p) = τ(p)} , (4.7.15)

and

W∩SynNP ,[p] = {Xι◦σ = 0 ∀σ ∈ Σ}∩{Xσ = Xτ if [σ(p)] = [τ(p)]} . (4.7.16)

To show that the space 4.7.15 is contained in 4.7.16, we assume X is an ele-
ment in 4.7.15 and that σ, τ ∈ Σ are such that [σ(p)] = [τ(p)]. We then need
to show that Xσ = Xτ . There are two options. First of all it may be that

125



CHAPTER 4. PROJECTION BLOCKS IN HOMOGENEOUS COUPLED
CELL NETWORKS

σ(p), τ(p) /∈ B. Because the only partition class in P possibly containing
more than one node is B, we see that the equality [σ(p)] = [τ(p)] implies
σ(p) = τ(p). From this and the fact that X ∈ SynN,p we conclude that
indeed Xσ = Xτ .
Next, we assume that σ(p), τ(p) ∈ B. Because it will in general not hold
that σ(p) = τ(p), we may not use X ∈ SynN,p to conclude that Xσ = Xτ .
Instead, we will show that σ(p) ∈ B and X ∈ W ∩ SynN,p together imply
that Xσ = 0. From this we then get Xσ = 0 = Xτ whenever σ(p), τ(p) ∈ B,
proving that indeed X is an element of W ∩ SynNP ,[p].
Therefore, let σ ∈ Σ be such that b := σ(p) ∈ B. Because the map ι satisfies
ι(C) = B, there exists an element c ∈ C such that ι(c) = b. Applying ι to
both sides and using that ι is idempotent we get ι(b) = ι2(c) = ι(c) = b.
Hence we see that σ(p) = (ι◦σ)(p). By the fact that X ∈ SynN,p we see that
Xσ = Xι◦σ. However, by the fact that X ∈W it also follows that Xι◦σ = 0.
We conclude that indeed Xσ = 0.

Next we want to show that

W ′ ∩ SynπP = Syn0 , (4.7.17)

where Syn0 := {Xσ = Xτ ∀σ, τ ∈ Σ} is the fully synchronous space. First
of all, because W ′ and SynπP are both synchrony spaces, it follows that

W ′ ∩ SynπP ⊃ Syn0 . (4.7.18)

It remains to show that

W ′ ∩ SynπP ⊂ Syn0 , (4.7.19)

hence that for all X ∈ W ′ ∩ SynπP we have Xσ = Xτ for all σ, τ ∈ Σ.
Therefore, let σ and τ be given. From the identity ι ◦ (ι ◦ σ) = ι ◦ (σ), we
conclude that X ∈W ′ implies Xσ = Xι◦σ. Likewise we find that Xτ = Xι◦τ .
Next, by the fact that ι(C) = B we conclude that [ι] ∈ ΣP is the function
that sends every node in NP to the node [B] ∈ NP . Since this holds equally
well for [ι ◦ σ] and [ι ◦ τ ], we conclude that in fact [ι ◦ σ] = [ι ◦ τ ]. Finally it
follows from X ∈ SynπP that Xι◦σ = Xι◦τ and hence that Xσ = Xτ , proving
that indeed X ∈ Syn0. This concludes the proof.

Remark 4.7.7. It follows from Theorem 4.5.4 that the space (V m, AΣP ) ∼=
SynπP admits a decomposition into invariant spaces

V m = (W ∩ SynπP )⊕ (W ′ ∩ SynπP ) = (W ∩ SynπP )⊕ Syn0 . (4.7.20)

The space Syn0 can furthermore be decomposed into dim(V ) indecomposable
representations of ΣP , on which this monoid acts trivially. Furthermore,
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if U ⊂ (V m, AΣP ) is any indecomposable (complementable) representation,
then U is isomorphic to some indecomposable component of eitherW∩SynπP
or Syn0. Any such isomorphism can be expanded to an equivariant linear
map from (V m, AΣP ) to itself, for example by letting this map vanish on
some complement of U . Since this map has the structure of a network map,
it must send synchrony spaces to themselves. From this we conclude that
if U ∩ Syn0 = {0} then U is isomorphic to some component of W ∩ SynπP .
Conversely, if U ∩ Syn0 6= {0} then it is isomorphic to a subspace of Syn0,
hence equal to a 1-dimensional subspace of Syn0. 4
For the following corollary we note that any network vector field for the
network NP can be realized as the restriction to SynNP ,[p] of a network
vector field on (V m, AΣP ) and hence of a network vector field on (V n, AΣ).
Restricting such a lifted vector field on (V n, AΣ) to SynN,p, we furthermore
see that a network vector field for NP can always be seen as the restriction
of a network vector field for the original network N . Similarly, any smooth
family of network vector fields for NP can be lifted to a smooth family of
network vector fields for N , on (V m, AΣP ) and on (V n, AΣ).

Corollary 4.7.8. Let N be a homogeneous coupled cell network with projec-
tion block B and corresponding quotient network NP . Let γf : V #CP ×Ω→
V #CP be a family of smooth network vector fields for the network NP , in-
dexed by Ω ⊂ Rk with 0 ∈ Ω. Suppose furthermore that γf satisfies γf (0, 0) =
0 and suppose the center subspace Wc of the linearization Dxγf (0, 0) satisfies
Wc ∩ Syn0 = {0}. We denote by Λf the set of smooth network vector fields
for N , γ̃g : V #C ×Ω→ V #C , such that γf = γ̃g|SynP ×Ω. Then, there exists
an open dense set U of Λf such that for all γ̃g ∈ U it holds that the locally
defined center manifold of γf around the origin is a local center manifold for
γ̃g around the origin. In particular, any (local) bifurcation occurring in γf is
then a bifurcation occurring in γ̃g, without any additional bounded solutions
appearing in this latter system.

Proof. We let Λ′f denote the set of smooth fundamental vector fields
Γh : (V n, AΣ) × Ω → (V n, AΣ) such that γf = Γh|SynNP ,[p]×Ω. Note that
Γh is in Λ′f if and only if Γh|SynN,p×Ω is in Λf . We pick an element γ̃g in
Λf and a corresponding element Γh in Λ′f with Γh|SynN,p×Ω= γ̃g. Next, we
decompose (V n, AΣ) as in Theorem 4.7.3:

V n = W ⊕W ′ , (4.7.21)

with

W ∩ SynN,p = W ∩ SynNP ,[p] (4.7.22)

127



CHAPTER 4. PROJECTION BLOCKS IN HOMOGENEOUS COUPLED
CELL NETWORKS

and

W ′ ∩ SynπP = Syn0 . (4.7.23)

Let W ′c be the center subspace of DxΓh(0, 0). We write

W ′c =

l⊕
i=1

Ui (4.7.24)

as the decomposition into indecomposable representations. If the component
Ui has a trivial intersection with SynπP then we may add an equivariant
linear map that vanishes on the complement of Ui to remove it from W ′c
without influencing γf . Hence we see that for an open dense set of Λ′f , and
hence of Λf , no such components are present. IfW ′c now has any components
isomorphic to a component of W ′, then by equation (4.7.23) its (non-trivial)
intersection with SynπP is in Syn0, contradicting the assumption that Wc ∩
Syn0 = W ′c ∩ Syn0 = {0}. We see that W ′c is therefore isomorphic to a
subspace of W . In [13] it is shown that the center manifold of Γh can
be seen as the image of an equivariant map from W ′c × Rk to V n × Rk.
Because this map furthermore preserves synchrony spaces, we find the center
manifolds of γf and γ̃g by restricting this map to (SynNP ,[p] ∩W

′
c) × Rk

and (SynN,p ∩W ′c) × Rk, respectively. However, since W ′c is isomorphic to
a subspace of W and because equivariant isomorphisms preserve synchrony
spaces, we have that

W ′c ∩ SynN,p = W ′c ∩ SynNP ,[p] . (4.7.25)

This proves that the center manifolds, and hence the bifurcations agree.

4.8 Example: Ring Feed-Forward Networks

In this section we will apply the machinery we have developed so far to a
generalization of the feed forward network. It will turn out that the reduced
vector fields of this network can be completely understood by that of two of
its quotient networks.

Definition 4.8.1. The (n, k)-ring feed-forward network Rn,k is the homo-
geneous coupled cell network with nodes C := {ci}n+k−1

i=0 and with monoid
Σ generated by a single element σ. This element is given on the nodes by
σ(ci) = ci+1 for i < n + k − 1 and σ(cn+k−1) = ck. We will collectively
refer to the (n, k)-ring feed-forward networks as simply the ring feed-forward
networks.
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0 1 . . . k-1 k

k+1

...

n+k
-1

Figure 4.3: The (n, k)-ring feed-forward network Rn,k.

We claim that the set of nodes B := {ck, . . . cn+k−1} ⊂ C is a projection
block in the network Rn,k. Indeed, it is clearly a block as we have σ(B) = B,
and therefore σi(B) = B for all i ≥ 0. To see that B is a projection block,
recall that the monoid Σ is generated by the single element σ. By Theorem
4.7.2, B is then a projection block if and only if σ restricts to a bijection on
B and any element outside of B is sent to B by some power of σ. By the
definition of the network Rn,k these two conditions are indeed satisfied.
By identifying the block B with a point, we get a network with k + 1 cells
CP := {[c0], . . . [ck−1], [B]} and with a monoid ΣP generated by the element
[σ]. This element is given on CP by [σ]([ci]) = [ci+1] for i < k − 1 and
[σ]([ck−1]) = [σ]([B]) = B. In particular, we see that this network is equal
to R1,k. This latter network is known in the literature as a feed-forward
network, and the bifurcations of its admissible vector fields are quite well
understood, see [14]. In particular, setting V = R and Ω ⊂ R it is known
that the generic steady state bifurcations of R1,k from a fully synchronous
point are either a fully synchronous saddle node bifurcation or a synchrony
breaking bifurcation. In this latter bifurcation there are, in addition to a
fully synchronous branch, k branches scaling as |λ|l1 to |λ|lk , where we have
li := 1

2i−1 .
Furthermore, if we set V = C and Ω ⊂ R then the feed-forward network
admits a synchrony breaking Hopf bifurcation supporting k branches of pe-
riodic orbits with amplitudes scaling as |λ|p1 to |λ|pk , where we have set
pi := 1

2(3i−1) .
Of the bifurcations just described, the synchrony breaking ones correspond to
a center subspace with trivial intersection with the fully synchronous space
Syn0. Hence, by the previous section we conclude that these synchrony
breaking bifurcations occur in the network Rn,k as well. To determine the
bifurcations corresponding to other indecomposable representations, let us
have a more detailed look at the network Rn,k.
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Theorem 4.8.2. Any ring feed-forward network is isomorphic to its own
fundamental network.

Proof. We begin by noting that c0 is a fully dependent node for any network
Rn,k. Hence, every ring feed-forward network is a quotient network of its
fundamental network. It remains to show that the number of nodes of the
fundamental network is equal to that of the corresponding ring feed-forward
network. In other words, since the nodes of the fundamental network are
the elements of the monoid Σ, we need to show that #Σ = #C. However,
in Rn,k we know that σn+k(c0) = σk(c0) = ck, from which it follows that

σn+k(ci) = σn+kσi(c0) = σiσn+k(c0)

σiσk(c0) = σkσi(c0) = σk(ci) .
(4.8.1)

Hence we see that σn+k = σk as functions, from which it follows that #Σ ≤
n+k = #C. The fact that #Σ ≥ #C follows from the fact that Rn,k can be
realized as a quotient network of its fundamental network or from the fact
that the functions σi send c0 to different nodes ci for i = 0, . . . k + n − 1.
This proves the theorem.

In light of Theorem 4.8.2 we may think of Rn,k as its own fundamental
network. In doing so, we will write Σ = C := {σ0 = Id, σ1, . . . σn+k−1}
where an element of Σ acts on an element of C by composition. Let us
furthermore write (V n+k, AΣ) for the regular representation of Rn,k. The
equivariant vector fields on (V n+k, AΣ) are then exactly the admissible vector
fields of Rn,k. Furthermore, the regular representation space (V k+1, AΣP )
for the network R1,k can be realized as an invariant robust synchrony space
(V k+1, AΣP ) = SynπP ⊂ (V n+k, AΣ). More specifically, SynπP is given by

SynπP = {Xσi = Xσj∀ i, j ∈ {k, . . . k + n− 1}} . (4.8.2)

Because B is a projection block, it follows from Lemma 4.7.4 that there
exists an idempotent element σT ∈ Σ such that σT (C) = B. By Lemma
4.7.5 this element gives rise to a projection AσT on (V n+k, AΣ) given by
(AσTX)σi := Xσi+T , where we use the convention of writing Xσi = Xσj if
i, j ≥ k and n|(i − j). Furthermore, because σT satisfies σT (C) = B, it
necessarily follows that T ≥ k. From this we see that

Im(AσT ) = {Xσi = Xσj if n|(i− j)} ,

ker(AσT ) = {Xσi = 0 ∀ i ∈ {k, . . . k + n− 1}} .
(4.8.3)

Note that ker(AσT ) is contained in SynπP , which accounts for the bifurca-
tions occurring in both R1,k and Rn,k, as we have found by Theorem 4.7.3
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and Corollary 4.7.8. Furthermore, if V = R then it can be shown that
ker(AσT ) is an indecomposable representation of ΣP , and hence of Σ. Note
furthermore that Σ acts on ker(AσT ) by nilpotent maps, a fact that we will
use later on.
To summarize so far, we know that (V n+k, AΣ) decomposes into the in-
variant spaces Im(AσT ) and ker(AσT ). The bifurcations corresponding to
ker(AσT ) are now related to the synchrony breaking bifurcations in R1,k,
and this was ultimately done by noting that R1,k is a quotient network of
Rn,k. We will now explain the bifurcations in Rn,k corresponding to Im(AσT )
by considering yet another, well understood quotient network of Rn,k.

Theorem 4.8.3. Let Σ denote the monoid of Rn,k. The map

πn : Σ→ Z/nZ
σi 7→ [i]

(4.8.4)

realizes Z/nZ as a quotient monoid of Σ. As a result, the regular represen-
tation of Z/nZ is realized in (V n+k, AΣ) as the space
Im(AσT ) = {Xσi = Xσj if n|(i− j)}.

Proof. First of all we see that the map πn is well defined, as σi = σj implies
n|(i− j). Next, it is clear that the map is a surjective morphism of monoids.
I.e we have that πn(σi ◦σj) = [i+j] = [i]+[j] = πn(σi)+πn(σj). Finally, by
Theorem 4.5.3 we see that the regular representation of Z/nZ is isomorphic
to the representation of Σ in (V n+k, AΣ) restricted to the invariant subspace
Synπn := {Xσi = Xσj if πn(σi) = πn(σj)}. Because πn(σi) = πn(σj) if
and only if n|(i − j), we conclude that Synπn = Im(AσT ). This proves the
theorem.

It follows from Theorems 4.8.3 and 4.5.4 that the indecomposable com-
plementable sub-representations of (V n+k, AΣ) contained in Im(AσT ) are
exactly the irreducible sub-representations of the regular representation of
Z/nZ. These are well understood. Furthermore, the irreducible represen-
tations of Z/nZ are mutually non isomorphic and are as representations of
Σ non isomorphic to ker(AσT ), as σ acts as a nilpotent map in the latter
representation. This proves that the generic steady state bifurcations in a
fully synchronous point of Rn,k, given that V = R and Ω ⊂ R, are exactly
given by the synchrony breaking bifurcation of R1,k and the generic steady
state bifurcations of Z/nZ.
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